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The study of annulenes and the dynamic processes that they
undergo has led to many fascinating discoveries.1 Bond shifting in
cyclobutadiene is now believed to proceed via heavy-atom tunnel-
ing.2 Ring inversion and bond shifting in cyclooctatetraene (COT)
have been extensively investigated;3 the latter process occurs via a
singlet, diradical transition state that violates Hund’s rule.3b

Comparisons of theory and experiment for [10]annulene provided
critical insights regarding the validity of different methods for
computation of annulenes.4,5 Recent work by Wannere et al.
revealed that [14]- and [18]annulene arenotbond-equalized; rather,
both exhibit pronounced C-C bond-length alternation, with the
implication being that bond shiftingis relevant to these [4n + 2]-
annulenes.5 In all of these cases ([4]-, [8]-, [10]-, [14]-, and [18]-
annulene), bond shifting is believed to occur via a planar or nearly
planar structure.

In contrast with the planar annulenes mentioned above, there is
a resurgence of interest in potential aromaticity in Mo¨bius
[4n]annulenes,6-10 exemplified by the synthesis of a Mo¨bius [16]-
annulene derivative,8 though later work argues it is nonaromatic.9

The preparation of a stable, neutral, clearly aromatic Mo¨bius
annulene remains elusive. Here, we present the first evidence that
neutral, highly aromatic, Mo¨bius annulenes play a critical role in
the known chemistry of [4n]annulenes. We show, using density
functional and coupled cluster calculations,11-13 that bond shifting
in [12]annulene can take place via such species, and that this
provides a mechanism for the thermal cis-trans isomerization
proposed by Oth and Schro¨der over 30 years ago.18 The work
described herein unites three fundamental concepts: thermal cis-
trans isomerization, bond shifting in annulenes, and Mo¨bius
aromaticity.

After characterizing tri-trans-[12]annulene1aby low-temperature
NMR, Oth and Schro¨der found that upon warming to-40 °C, the
bicyclic product3 was formed, presumably via electrocyclization
of the transient di-trans isomer2 (Scheme 1).18a Because2 was
never observed, the determined barrier of 17.4( 0.1 kcal/mol
effectively pertains to the isomerization1a f 2. For comparison,
similar configuration change in [16]annulene was found to have a
barrier of ca. 10 kcal/mol.18b Both of these barriers are much lower
than those for thermal cis-trans isomerization (via diradicals) in
acyclic systems of similar size (Ea > 28 kcal/mol),19 suggesting
that cis-trans isomerization in annulenes occurs via a different
mechanism than in acyclic systems. We find that this is indeed the
case for [12]annulene.

Given an appropriate starting conformation of1, bond shifting
can effectively result in cis-trans isomerization to2.20 Assuming
that bond shifting proceeds via a bond-equalized transition state,
the solution to finding the appropriate conformation lies in
Heilbronner’s idea that for [4n]annulenes, distortions from planar
to Möbius topology10 could occur without loss ofπ-electron energy,
assuming that angle strain is not prohibitive.6a On the basis of our
prior computational work on conformational automerization in1,21

the lowest-energy conformer of1 (1a, Scheme 1, Figure S1)22 can
undergo slight bond rotation with minimal energy cost (<1 kcal/
mol) to form the Möbius, nonaromatic, conformation1b (Figure
1).

From this latter conformation, twisting of the C4-C5, C5-C6,
and C6-C7 bonds, coupled with bond-length equalization of all
C-C bonds, leads to a highly delocalized transition state for bond
shifting (TS1b, Figure 1). We refer to this process as “twist-coupled
bond shifting”. IRC calculations indicate thatTS1b connects1b
to di-trans isomer2a, which can readily undergo conformational
change to2b (Figure S2), followed by thermal electrocyclization
to 3 (Ea ) 13.8 kcal/mol).22 Figure 2 summarizes the energetics of
the entire process at the CCSD(T)/cc-pVDZ//BH&HLYP/6-
311+G** level. The computed overall barrier of 18.0 kcal/mol for
the1a f 3 process (bond shifting being the rate-determining step)
agrees well with the experimental barrier of ca. 17.4 kcal/mol.18a

Figure 1. BH&HLYP/6-311+G** optimized geometries of three Mo¨bius
conformations of tri-trans-[12]annulene1 (left), transition states for bond
shifting from each (middle), and bond-shifting products (right). Selected
C-C distances (Å) and CCCC dihedral angles (°) are shown.
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TS1b is a clear example of a Mo¨bius aromatic species. Moreover,
it is the first example of a Mo¨bius aromatic transition state that
does not involve breaking or formingσ bonds.6b,23 As expected
for a bond-shifting transition state,TS1bexhibits a small∆r value
of 0.031 Å. Its large negative NICS value24 (-13.9 ppm) and
magnetic susceptibility exaltation25 (Λ) (-43.8 cgs-ppm) reveal that
TS1b is highly aromatic (Table 1). Thus, the transformation of1
f 2 via TS1b suggests that Oth and Schro¨der prepared a Mo¨bius
aromatic [4n]annulene, albeit in the form of a transition state, over
30 years ago.26

Two other conformations of1 (1c and 1d, Figure 1)27 can
undergo twist-coupled bond shifting via Mo¨bius aromatic transition
states, though these barriers are higher than that for1b (Table 1).
Analogous toTS1b, the transition statesTS1c andTS1d (Figure
1) exhibit strong aromatic character, based on the large negative
NICS andΛ values (Table 1). Bond shifting viaTS1c or TS1d
leads to two different conformations of di-trans-[12]annulene4 (4a
and4b, respectively, Figure 1), an isomer previously studied.7c,28,29

Whereas planar bond shifting interconverts degenerate species,
twist-coupled bond shifting produces configuration change. This
new mechanism (i) suggests that neutral, highly aromatic, Mo¨bius
geometries serve as the transition states for cis-trans isomerization

in the case of [12]annulene, and (ii) probably explains the numerous
known examples of facile cis-trans isomerization in [4n]annulenes
(n g 3).1,18b
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Figure 2. CCSD(T)/cc-pVDZ//BH&HLYP/6-311+G** potential energy
curve for the conversion of tri-trans-[12]annulene1a to di-trans isomer2a
and ultimately tocis-bicyclo[6.4.0]dodeca-2,4,6,9,11-pentaene (3).

Table 1. Relative Energies (kcal/mol) and Aromaticity Indicators
of [12]Annulene Stationary Points and Related Speciesa

species sym config BHH rel E CC rel E ∆r NICS Λ

1a C1 CTCTCT 0.0 0.0 0.147 1.3 10.6
1b C1 CTCTCT 0.8 0.7 0.156 -1.6 0.4
TS1b C1 20.2 18.0 0.031 -13.9 -43.8
2a C1 CCCTCT 5.4 5.7 0.150
TS2a2b C1 CCCTCT 13.9 13.7
2b Cs CCCTCT 2.8 4.0
TS2b3 Cs 19.3 17.8
3 C1 -15.2 -16.5

1c C2 CTCTCT 4.7 4.5 0.157 -0.3 6.0
TS1c C2 27.8 25.5 0.035 -13.4 -43.8
4a C2 CCTCCT 0.5 0.9 0.152

1d C2 CTCTCT 8.3 7.9 0.154 0.5 5.9
TS1d C2 26.8 25.8 0.027 -15.3 -46.7
4b C2 CCTCCT 5.7 6.3 0.135

a Config ) cis-trans configuration. BHH) BH&HLYP/6-311+G**.
CC) CCSD(T)/cc-pVDZ//BH&HLYP/6-311+G**. Relative energies (kcal/
mol) are corrected for differences in ZPE.∆r ) difference, in Å, between
the longest and shortest C-C bonds in the annulene ring. NICS andΛ
computed at the B3LYP/6-311+G**//BH&HLYP/6-311+G** level. NICS
) nucleus-independent chemical shift, in ppm, computed at the ring center
using the GIAO method.Λ ) magnetic susceptibility exaltation (MSE, in
cgs-ppm), computed using the CSGT method and the increment method.
Details can be found in Supporting Information.
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